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via the EM Algorithm

JoseRamon G. Albert, Lilia Elloso & Ma. Olivia C. Tanl

ABSTRACT
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Since the development of a computer intensive tool called the EM algorithm, the statistical analysis of a number
of data sets with components that are missing or unobserved has been performed. Here, we provide 'a detailed
discussion of how to implement the EM algorithm in order to model a finite mixture of normal distributions to
grouped data For achieving this ends, we firstly review the implementations of the EM algorithm to grouped
and to finite normal mixture models. Results from a simulation study and from an analysis of real data
representing the main concern are then presented. Critical modeling issues, including finding the 'number of
components, appropriate starting values, and implementing variants of the EMalgorithm, are alsodiscussed.
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1. INTRODUCTION

There are a number of schemes to deal with data with components that are missing or
incomplete in some fashion. The simplest scheme, which most standard statistical software
provide as the default option, consists of discarding the partially recorded data and
performing a regular analysis on the fully recorded observations. This is an adequate scheme
provided that the proportion ofincompletely recorded data is rathernegligible. However, this
has obvious limitations as the estimates produced are not only inefficient but also badly
biased.

In the seventies, a variety of imputation schemes wereproposed, advocated andapplied in the
statistical literature as an alternative to the scheme mentioned above. By the late seventies,
Dempster, Laird and Rubin (1978) formally proposed an iterative computer intensive scheme
(somewhat related to the idea of imputation) which they called the EM algorithm. This
algorithm provides a mechanism for calculating the maximum likelihood estimates (MLEs)
of parameters in statistical models where the underlying data are incomplete in some fashion.
Thisdevelopment led to a paradigm shift in the treatment of incomplete and missing data. It
also had an impact even within the Bayesian school of thought, as methodologies similar to
the EM algorithm have been proposed and advocated, e.g. Data augmentation (Tanner and
Wong, 1987) and Markov Chain Monte Carlo (MCMC) methods. For a recent and rather
elementary review ofMCMC methods see,e.g., Brooks (1998).

To provide a background for the main problem we discuss here, i.e. fitting a normal mixture
to grouped data, we firstly provide details in the next section on how to implement the EM
algorithm for grouped data from a normal distribution. Then, in Section 3, we show how to
implement the EM algorithm for a finite mixture model, in general, and in a normal mixture
model, in particular. Hitherto, therehasnot beenany investigation of the casewhen we wish
to fit a normal mixture model to grouped data. This is the main objectof investigation in this
project. We provide the technical details of this problem in Section 4 based on the results
from Sections 2 and 3. We show here details on how to implement the EM algorithm and
propose also some variants to the EM algorithm. In Section 5, we discuss numerical results
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from a simulation study and from performing an analysis on real data. A summary of the
results of this investigation anddirections for future research are given in the final section.

2. GROUPED DATA FROM A NORMAL DISTRmUTION

One of the facts we often take for granted is that empirical data are either discrete or
discretized. In the lattercase, data are oftengrouped eitherconsciously or unconsciously in
the data collection process. (See Heitjan, 1989). Grouping may be a deliberate effort to
preserve confidentiality or to summarize information, Consider, for instance, the collection of
interval income data in sample surveys (which helps in having subjects be morecomfortable
that the information they provide would not be used against them).' At other times, the
grouping ofdatatogether with the level of datacoarseness maybe a result of a datagatherer's
oblivious selection of a level of accuracy of measurement. For instance, when measuring the
length of fish, investigators may find it convenient to record the frequencies oflengths falling
in certain intervals. In eithercase, grouped dataarecollected andconsequently, what wemay
haveare frequencies g, of observations falling in disjoint fixed intervals (aj,~) where i=l, 2,
... ,m.

Suppose that we have some underlying "raw" data XI. X2, •.. , X, where n = gl+ ~ + ... +
~, with the raw data assumed to form a random sample from a normal distribution with
mean Il and variance d, which wehenceforth denote asN(Il,d). To estimate the parameters
u, and d, we may want to calculate the MLEs since MLEs have a number of desirable
properties under a set of mild regularity conditions. (Cox and Hinkley, 1974). Toward this
end,weneed to maximize the likelihood function

m

Liko(O) = rr[<D(PJ-<D(aJf"
;=1

(I)

where Pi = h; - p , a, = Q; - P , and <D denotes the cumulative distribution function of the
u u

standard normal distribution.

Instead of maximizing (I), wemayequivalently maximize the log likelihood

•

m

t;(p, ( 2
) =L g.ln]<D(P; ) - <D(a; )]

;=1

(2)

This is a non-trivial task since the resulting likelihood equations, obtained from setting the
partial derivatives of l-o to zero,are nonlinear. Consequently, numerical methods haveto be
used.

Had we observed, however, the X's instead of the g's, then we would have a different
likelihood (forthe X's) whose logarithm, viz.,

L(p,u2)=!{[_.!.In(2trU2)]-:-[(Xi-~i]} (3)
i=1 2 2u

would be much easier to maximize thanthe log likelihood in (2). In particular, we have
I n

.u =-LXi (4)
n i=1
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n ;=\. n ;=\

as the MLEs for Jl and eI, respectively. Even though the raw data, i.e. the X's, are
unobserved, we could impute their values, say, by the midpoints of the intervals. The
resulting data then yield pseudo-Ml.Es, which in tum may help us improve our initial
imputations for the X's. These improved guesses yield a new set of pseudo-MLl~s,yielding a
further improvement of the imputations, and so forth. One scheme that provides specific
updates for improving the imputed X's is the EM algorithm. (See, e.g., Dempster, Laird and
Rubin, 1978.)

To discuss the technical details of the EM algorithm in its full generality, we firstly denote
our "observed" data by Y, and X as' some "complete" version of Y, a as the vector of
parameters to be estimated, 0 as the parameter space, and L(a) as the log likelihood
pertaining to X. Definenow the function

Q(a,a') = E [ qa) IY, a'] (6)
which is assumed to exist for all (6,9')e 0 x 0. Note that we may view Q as a pseudo log
likelihood function since it is a reconstruction ofL based on the incomplete data Y and some
preliminary estimate a' of the parameter. Alternatively, we may think of Q as an
approximation to the log likelihood 1.0 pertainingto Y. To carry out the EM algorithm, we go
through the following steps:

•

i.
11.

m.
iv.
v.

Set t to O.
Choosesomeestimatea(I) of the parameters arbitrarily
(E step)ComputeQ(a,a (I»
(M step)Choosee (l+I) which maximizes Q(a;a(I» in the first argwnent.
If/l.1/ is somenorm defined one x 0, and 8>0 is some fixed, smallvaluefor

which
l/a(I+1) - e (I) 1/ > 8

then set t to. t+l and return to Step iii; otherwise at+1) is our estimate of the
parameter.

•

Notice that the E step is an evaluation of an expectation, whilethe M step is a-maximization
of the resulting pseudo log likelihood Q, hence the term EM algorithm.

The idea behind the use of the EM algorithm is as follows: when the log likelihood La of our
data is difficult to maximize, we may find a way to augment our data to form some
"complete" data set (whose log likelihood L is "easy" to maximize). We can then view the
observed data as an incomplete version of the (augmented) "complete" data set. Sincewe do
not have the log likelihood L (of the complete data) available, wereconstruct it throughthe Q
function. Here, we impute data that are not observed (resulting in the E step). This
imputation scheme enables us to calculate a pseudo MLE (which forms the M step). This
pseudo MLE can then be used to improve our imputations for the data, forming a new
reconstruction of L, yielding a new pseudo MLE which can be used to again improve our
imputations, and so forth, until convergence results. (See Figure 1).



18 Albert,E810s0 and Tan: Analysis OfGfOuped Data
fTom a Normal Mixture via the EMAlgorithm

..
Given y with log
likelihood Lo

Form some "complete version "]{ of the
databy augmenting y withlog likelihood L

••
Estep

C===::::::> jmputemissing components of It

(andthuscompute Q, the reconstructed
Lofx)

<
Mstep
Obtain estimate of9
(pseudo MLE)

Figure 1 Diagram representing thltEM algorithm

To illustrate the EM algorithm, consider the grouped data situation. For i=l, 2, ... , n, let .
(ay,bx) be the interval where Xiis known to belong. Here, the Qfunction has the sumofthe X
and the sumof the X2 values as the sufficient statistics, i.e,

Q(O,O ') =E[~ {[--i1n(2nu2)]- r(X;:f)2]}IOJ 's x, S hj~(.u' ,(~)')]

so that performing the E step at iteration number t, for t=1, 2, ... , is then equivalent to
calculating:

E[Xj IOj < XI < hi; ~i'); (0'2)<1)] =p<I) +0:')0'<' ) (7)

a 2 = .!...t (X I - it)2 =.!...t (X;2 - 2 it x I + A2)
n 1=1 n 1=1 (8)

where •
b(l) =_ ;(pJ-;(al )

I 0(ft;) - <I>(a;)
and

The EM updates in (7) and (8) may have tedious notations but they have a rather intuitive
appeal. Equation (7) signifies that the conditional mean of a grouped normal distribution is
the mean of the underlying normal distribution adjusted by some multiple of the standard
deviation. Thismultiplier, as should be expected, is a function of the interval that contains
the raw data. Similarly, inspecting equation (8) reveals that the second moment is the square
ofthe first moment adjusted appropriately by somemultiple ofthe variance.

•
The specific derivation of (7) and (8) follows immediately from the fact that when X - N(J!,
eI) and for some fixed a and b wehavea < X < b, then the first two conditional moments of
the standardized value ofX are
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b ~¢(.~-p)
E[ X - P Ia < X <b] = f x - P a a . dx

a a a et>( b - P ) _ et>( a - P )
a a

¢(~.::J!) _¢( a -l!- )
=:_ a a

et>( h - p) _ et>( a -I!..)
(j a

and

b ~¢(-p)
E[( X - PII a < X <b] =f(- P)2 a a. dx

a a a et>(b-p)-et>(l!2..)
a a

b - P ¢(h - p) _ a - p ¢(a - fI..)
::;:1- a a a a

et>( b - p ) _ et>( a - p~)
a a

with the latter being a direct application of integration by parts.

17

To carry out the M step, on the other hand, we merely need to impute the unobserved X and
X2 values in (4) and (5); i.e. compute

p(t+I) .:IXi(l) (9)
n i=\

•
(a21'+I) = .!.I (x,(t) - p(t») =.!.t ((X?») - 2p(t)xiI) + (p(t)r)

n i=\ n iel

with Xi(l)given by (7), and (Xi
2t )given by (8).

(10)

•

•

The statistical analysis ofgrouped data from a normal distribution above has been considered
in a much more general setting, viz., for a multiple linear regression model with grouped
covariates. See, for example, Hasselblad, Stead, and Galke (1980); or Little and Rubin
(1987). However, we believe that the detailed discussion above is necessary to elucidate the
main problem of this statistical investigation.

3. NORMAL MIXTURES

Before we proceed further into the main problem, it is now necessary for us to consider a
finite mixture model

I<

f(y;8) =L 1lj.f;(y;8j )

j=1

k

with 1lj~ 0, for} = 1, 2, ..., k, and L1lj =1. This model signifies that with probability 1lj,an
j=1

observation came from a certain probability distribution ./j. Consequently, the "population"
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•

(11)

(from which our data were drawn) may be viewed ask heterogeneous sub-populations of
sizesproportional to the mixing weights Jil, ...• Jik. The finite mixture model thus provides a
framework for expressing heterogeneity of data (and consequently, a link with cluster
analysis).

Morespecifically, let us consider a mixture ofnormal distributions

k (1 J(Y -!i Jf(y;O) =L1l"j - tP 1
J=I (jl a 1

In (11), tP is the probability density function of a N(O,I) distribution. The normal mixture
serves as an alternative to the classical practice of fitting merely a normal distribution to data.
Although the normal distribution is certainly the most important distribution in the whole of
statistics, yet it is not a panacea. A normal mixture can, for instance, model the residuals of
outliers in a regression model. Othermixture models have also been developed for a host of
applications. For details, see for instance; the comprehensive text of Titterington, Smith and
Makov (1985) or that ofMclachlan, G. 1. and Basford, K. E. (1988).

For the normal mixture model given by (11), the MLEs are obtained by maximizing the
likelihood function

"
Liko(8) =Df(YI;O)

;=1

with f givenby (11). Equivalently, thisis achieved bymaximizing the log likelihood

4(0) =~)n[. ±Jii~)¢(YI - !i])] (12)
I=J 1=1 (jj U j

This is once again a nontrivial task as the resulting likelihood equations are nonlinear.
Moreover, when the variances are unrestricted, the log likelihood of mixture models is
unbounded as each data point gives rise to a singularity on the edge of the parameter space.
(See, e.g., Cox and Hinkley, 1974, pp. 291-292). For ease of modeling, we henceforth
assume that the component variances are equal. This would not only reduce the number of
parameters to be estimated but alsoassures that removal ofsingularities (Hathaway, 1983). In
particular, wenowhave (12) simplifying into

Lo(O) =tln[ ±Jrj(!)tP(YI - !ij)] (13)
1=1 j=1 (j (j

Here the MLEs are still not of a closed form, necessitating the use of a numerical algorithm.
One such algorithm is the EM algorithm, which provides a simple set of iterative equations.
Another example of such a numerical algorithm is the Newton method defined by the
iteration

0(1+1) = 0(1) + [I(0(1))rl S(0(1» t = 0,1,2,...

where S is the "score", i.e. the vector of partial derivatives of the loglikelihood and1 is the
"information matrix", the negative of the matrix of second partial derivatives of the
loglikelihood. This scheme is motivated by the following first order Taylor series
approximation of the scorevector:

8(0(/+1» =8(0<1» - (0(t+1) -O(/»[l(O(t»]

,.'

•

•

•
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Ife(I+I) is near the MLE, then the left hand side of the aboveequation is zero. so that solving
fore(I+1)yields the Newton method iteration given earlier.

Although the Newton method is a rather fast method of obtaining the MLE, there are some
setbacks to applying it (especially when the dimension of theparameter space is ratherlarge).
In this investigation, we are much more interested in applying the EM algorithm ratherthan
the Newton method. To represent the finite mixture model of(13) within the EM framework,
let us now denote Zj = (Zil,ZQ, ... , Zik) as some latent allocation vector with Zij,taking the value
1 if y, belongs to the jtli normal component, and zero otherwise. Although the Zij'S are latent;
by'construction, it is clearthat

P{ zij = 1 }= 1tj and P{ Zij = 0 } = I-1tj j = 1,2, ... , k
for i=l, 2... , n and j = 1,2, ... , k. Note that within a Bayesian context, the latent allocation
variables can be viewed as hyperparameters. Furthermore, had we observed the values of
these Zij'S, we could then separate the data sets into k independent, distinct subsets and
consequently analyze each dataset accordingly. Thus, our data, viz.,. the Yi,'S, can be
considered as an "incomplete" version of the panel data set

Yl, ZIl, ZI2, , Zlk

Y2, Z2J. Z22, , Z2k

Yn, Znl, Zn2.... , Znk
The panel dataset yields a different log likelihood function

L(O) =t i:Zvln[1rjC-.!.);(YI - #1)] (14)
1=1 je) Uj Uj

which, unlike the log likelihood in (13), yields the following computationally tractable MLEs

j = J, 2, .:., k

j=l,2, ... ,k

with

j = 1, 2, ... , k.

•

•

To implement the EM algorithm, we thus start by defining our complete data as the panel
data above. From (6) and (14), we see that the resulting Q function is a linear function of the
latent allocation variables, i.e., .

E[L(O) I(y) 'Y2 ""'YII);O')] =t ±In[ni-
1

);CYI - #1) ]E[zv IYI'O ']
Ie) 1=1 U} U}

and thus, the E stepreduces to calculating
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(15)

(I)

1i(I)A.(Y; - Pj )
J 'I' 0"(1)

E[ I '0(1)] - jzij Y;, - k (I)

L1il')(J(Y; - ~h )

h=1 O"h

This just happens to be the current estimate of the posterior probability that Yi belongs to the
jibnormal component for i=1, 2... ,n; and j = 1, 2, ... , k. Note that the right hand side of(15)
is a natural consequence of Bayes' theorem. Furthermore, we can perform the M-step just by
Calculating the tractable MLEs obtained from '(14) with the zij's imputed from (15), i.e.,
compute:

(1+1)
(1+1) nj1ij =--

n
(1+1) __l_{-. (I)

f.lj - (I).t-.J Zij Y;
nj ;=1

1 n k

(0"2)(1+1) =- LI>t)(Yi -py»2

n ;=1 j=1

where for j=l, 2,.., k
n

n(I+1) =" Z(I)
J .t-.J IJ

i=1

and

(16)

(17)

(18)

(19)

(20)

•

(21)

For a discussion of a number of applications of the EM algorithm for a more general finite
mixture model, see, e.g.' Dempster, Laird and Rubin(1978) or Titterington, Smith and Makov
(1985).

4. GROUPED Jl)A1fA FROM A NORMAIL MllX1fUlRlE

Having discussed in the past two sections of this report the statistical analyses of grouped
data from a normal distribution and ofdata from a normal mixture, we now consider merging
these two incomplete data settings. To achieve this means, let us firstly follow the discussion
and notations in Section 3. Moreover, we suppose that, in addition to having an underlying
normal mixture model, the "raw" data Yr, Y2, ... , Ynare unobserved, i.e. we only know that
Yr is in some interval (ar,br) for i=1, 2, ... , n. In this case, the E step is performed by
estimating not just Zjj. but also ZjjYr and the ZjjYi2 for i=l, 2, , .. , n; j = 1, 2, .., k. The Zjj's are
updated by a modified version of(15):

E[ I
· b '0(1)] _ 1iY)[cI>(PJ'»-<I>(aS»]

zij Q; < Yi « o.; - k

L1il')[<I>(Pj~» - <I>(a~»]
hel

b (I) (I)

where P~o = ,-~j and a~.r) =Q, - (~j • Henceforth we denote the right hand side of (21)
0" 0"

as i ').IJ

•

•
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To perform the M step, we calculate (16), (17) and (18) with ZijYI and zijyl are respectively
estimated by

where

k

Ltry)(Py) + 8~t)(J(t)

j=1

kL trjl)[(p;'»2 + (1- r~'»«(J(I»2]
j=1

8(1) =.. ¢J(P!~'»-¢J(a~'»
'} <I>(P~'»-<I>(a~I»

(22)

(23)

•

•

•

•

and
R(I)",( R(I) (1)",( (I»

(I) =(8(1»2 + f'ij 'P f'1j -alj 'P aij

YI) I) <I>(P~.I» - <I>(a~n)

The expressions in (22) and (23) follow immediately from (7) and (8) and from applying the
well knownidentityE(U)=E(E[UIV]) withV being the vector of latentallocation variables.

From the two statistical models discussed in. Sections 2 and 3, and the model we have
discussed in this section, we see that the EM algorithm is rather easy to implement for some
statistical models. Moreover, the estimates obtained fromthe EM algorithm are "stable" since
the EM algorithm has the following basicproperties:

Theorem 1 (a) Let {8Ct)} be a sequence of estimates of ~obtained from the EM algorithm,
then L(8<1+I» ~ L(8 <l~ for t = I, 2, ... with equality if and only if Q(8<1+1),8 <l~ = Q(8t),8 (t~.

(b) If 8 is the MLE of ~then 8 is a fixed point of the EM algorithm. (c) If L is bounded
above, {8ct)} is a sequence of estimates of ~obtained from the EM algorithm, and eis the
MLEof ~then L(SC1» converges to L(e).

The first part of this result is a trivial consequence of Jensen's inequality. See Dempster,
Laird and Rubin (1978) for details. Actually, if we were to simply increase the Q function
rather than maximize it at every iteration, then L still increases. The second part of the result
indicates that if we were to have the MLE as the initial value for the EM algorithm, then all
succeeding iteratesshould be the MLE. The final part of the result follows frombasicresults
in advancedcalculus.

Such features of simplicity and stability have made the EM algorithm an extremely popular
tool in the statistical literature (Stigler, 1994). Moreover, convergence to a local maximum is
assured under a mild set of regularity conditions (Wu, 1983). However, there are cases when
global convergence via the EM algorithm is not guaranteed especially whenthe loglikelihood
has multiple maxima and ridges (e.g., see Aitkin and Wilson, 1980). In consequence, when
using the EM algorithm, or any other numerical algorithm for that matter, it may be wise to
provide good initial starting estimates or run the EM algorithm from a variety of starting
points.

Even when the EM algorithm does converge, it may converge rather slowly. The EM
algorithm has a linear rate of convergence as opposed to the wellknown quadratic and super
linear rates of convergence of Newton type methods. Although the EM algorithm may
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converge slower than the Newton method, the EM algorithm, unlike the Newton method, has
a statistical flavor. Moreover, the rate of convergence of the EMalgorithm is governed by the
proportion of missing information (see,e.g., Dempster, Laird, and Rubin, 1978). That is, the
higher the proportion of missing information, the slower the convergence of the EM
algorithm. Thishaspushed the investigation of methods on speeding up the EMalgorithm. A
variety of proposals have been suggested, which include the use of standard acceleration
schemes (e.g.,Jamshidian and Jenrich, 1993)~ hybrid schemes (e.g.. Aitkin and Aitkin, 1990),
and variants of the EM algorithm (e.g., Biscarat, Celeux, and Diebolt, 1992; Meng and van
Dyk, 1997;Liu, Rubin and Wu, 1998).

For our purposes in this investigation, we maywish to modify the EM algorithm by inserting
a classification scheme within the E and M steps, i.e.

. ztt) =1 if ztt) =max {z~)}
CEM h=I.2 •...•k

where z<.t) are the updates from the EM algorithm given by (21). The M step nowuses these
IJ

classification updates to obtain a completed data set, and consequently a pseudo MLE.
Intuitively, we expect this EM variant to converge much faster than the regular EM
algorithm.

Another variant to the EM algorithm for this problem consists of inserting stochastic updates
within the E and M steps following Biscarat, Celeux and Diebolt (1992). Here, the latent
allocation variables and the raw data are updated by a simulation mechanism (instead of a
fixed mechanism such as the one obtained the classification EM variant aboveor the regular
EM algorithm). Specifically, the missing zij's are updated by drawing from the conditional
distribution given the current fit for the parameter and the current estimates for the raw data.
The estimates of the rawdata, on the otherhand, are updated bydrawing from theconditional
distribution given the current fit for the parameter and the stochastic updates of the latent
allocation variable. The convergence of this algorithm does not anymore correspond to the
same idea of convergence of the EM algorithm with the former pertaining to a convergence
in distribution while the latter meaning pointwise convergence. For some results on the
convergence of stochastic variants of the EM algorithm, see Biscarat, Celeux and Diebolt
(1992). .:

If, in addition, we wish to obtain the standard errors of the MLEs obtained from the EM
algorithm, we could perform a bootstrap, or use the method of Louis (1982) or that of Meng
and Rubin (1991). The method of Louis (1982) and that of Meng and Rubin (1991) are
based on the decomposition of the complete data information into the observed information
and the missing information. For other details on the implementation of the EM algorithm,
see, e.g., Dempster, Laird and Rubin (1978), Little and Rubin (1987), or Mclachlan, G. 1.
and Krishnan, T. (1997).

5. DISCUSSION

In this section, we discuss the numerical results from a simulation experiment we
performed. This Monte Carlo experiment consisted of 50 simulation runs of ISO grouped
data, and 50 simulation runsof 300 grouped data. The "raw" datawere simulated from a 1/4
N(O,I) + 1/4 N(2,1) + 1/4 N(5,1) +114 N(10,1) mixture, and then grouped into-intervals of
length 0.5. To circumvent the possibility of having the EM algorithm trapped in a local

•

•

•

•
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maximum, we firstly applied the EM algorithm without adjustments due to grouping. That is,
we implemented the EM updates in Section 3 with the midpoints of the intervals of the
grouped data considered as though they were the actual raw data. The initial starting points
from this unadjusted EM algorithm were the estimates obtained from applying a k-rneans
cluster analysis procedure (Hartigan and Wong, 1979). The final estimates from the
unadjusted EM algorithm then formed as the initial estimates for running the EM algorithm
with grouping adjustments, and the two variants of the EM algorithm proposed in the
previous section. All the statistical computations and graphs shown in this section are
outputs from the Windows 95/98 version of the R statistical programming language, freely
available at any of the Comprehensive R Archive Network (CRAN) sites, such as:

http://www·cran.r-project.org

To show the difference between the three algorithms, we performed 30 iterations of the EM
algorithm, the classification variant and the stochastic variant (since the unadjusted EM
algorithm converged after about 20 iterations). The numerical results of our Monte Carlo
experiment are listed in Table 1. Here, we provide the number of successful runs, the
average of the estimates (and their respective standard deviations). We measured the success
of the run according to whether or not a particular simulation always produced estimates
within two standard deviations away from the true values of parameters of the simulation
model. We see in Table 1 that the two variants of the EM algorithm seem to yield better
estimates than the regular EM algorithm perhaps because the EM algorithm still gets trapped
in local maxima of the loglikelihood (even if we started the iteration from reasonable
estimates).

Table 1 Results from simulation study for n=150 and n=300.

n=150 EM classification EM stochastic EM
successful runs 31 33 34
XI 0.2914(0.1107) 0.2940(0.1140) 0.3108(0.1136)
Xz 0.2814(0.0587) 0.2783(0.0676) 0.2559(0.0832)
X3 0.1847(0.0934) 0.1816(0.1 048) 0.1911(0.1070)
1t4 0.2425(0.0479) ~.2461(0.0541) 0.2423(0.0541)
~l 0.1281(0.5135) 0.1395(0.5159) 0.1177(0.5008)
~z 2.8064(1.1352) 2.8348(1.1412) 2.7741(1.2447)
f.l3 6.0209(1.6649) 6.0426(1.6618) 6.2084(2.1417)
~4 9.9501(0.1896) 9.9701(0.1821) .10.000(0.1531)
(J . 1.0383(0.2576) 0.8246(0.2387) 1.0342(0.2549)
n=300
successful runs 32 36 36
XI 0.2889(0.1076) 0.2898(0.1079) 0.2991(0.1093)
Xz 0.2893(0.0584) 0.2855(0.0595) 0.2536(0.0717)
Xj· 0.1800(0.0935) 0.1815(0.1012) 0.2103(0.0947)
X4 0.2419(0.0402) 0.2432(0.0428) 0.2370(0.0513)
f.ll 0.0281(0.5135) 0.0281(0.5135) 0.0506(0.4530)
~z 2.6064(1.1352) . 2.5064(1.13~2) 2.5383(1.1871)
f.l3 6.0209(1.6649) 6.0209(1.6649) 5.7692(1.8734)
f.l4 9.91,79(0.1587) 9.9336(0.1463) 9.9990(0.1367)
(J 1.1532(0.2296) 0.8876(0.2411) 1.0762(0.2661)
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Since the stochastic variant of the EM algorithm appears to provide the most adequate
estimates, weapplied it also to twosetsof real, grouped data listed in Tables 2 and 3.

The datain Table 2 pertainto the pooled length distribution of the fish species auxis thazard
collected in Camotes Sea in July 15th from 1983 to 1987, generously provided by the Bureau
of Fisheries and Aquatic Resources. Here, the component normal distributions may possibly
pertain to the length distribution of fish of varying age and/orsex groups. Onthe otherhand,
the data in Table3 is a grouped version of the velocities of 82 distant galaxies in the Corona
Borealis region. The raw data have been analyzed within a mixture context (see, e.g.
Richardson and Green, 1997). To show that the methodologies we propose work, we
however reanalyze themin thisreport.

Table 2 Frequency data of fish lengths from
Lavapie-Gonzales, et al: (1997). .

•

Length
18.5
19.5
20.5
21.5
22.5
23.5

Frequency
4
6
5
7
16
12

Length
24.5
25.5
26.5
27.5
28.5
29.5

Frequency
5
5
20
19
11
8

Length
30.5
31.5
32.5
33.5
34.5
35.5

Frequency
9
1
3
3
9
14

Table 3 Grouped data pertaining to
velocities of 82 distant galaxies

Interval Frequency Interval Frequency Interval Frequency •
( 9.0, 9.5) 3 (20.0,20.5) 7 (24.0,24.5) 4
( 9.5,10.0) 2 (20.5,21.0) 6 (24.5,25.0) 2
(10.0,10.5) 2 (21.0,21.5) 2 (25.5,26.0) 1
(16.0,16.5) 2 (21.5,22.0) 4 (26.5,27.0) 2
(18.0,18.5) 1 (22.0,22.5) 7 (32.0,32.5) 1
(18.5,19.0) 3 (22.5,23.0) 4 (32.5,33.0) 1
(19,0,19.5) 7 (23.0,23.5) 4 (34.0,34.5) 1
(19.5,20.0) 11 (23.5,24.0) 5

For analysis of these real data, the starting values used for the stochastic version of the EM
algorithm were the estimates obtained from applying a k-means procedure. Moreover, in
addition to estimating the parameters of the mixture model, the number k of normal
components are alsoestimated. To go aboutsucha problem, wemayfirst fix the value ofk as
some small value; estimate the parameters of the k component normal mixture; increase the
value of k and repeat the estimation until an "optimal" value of k is chosen. Such a
procedure is analogous to the forward selection method used in model selection for linear
regression analysis.

•

•
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If we were to use the log likelihood (evaluated at the stochastic EM estimates) as a model
selection criterion, then a model with more parameters may be favored, even when the true
model actually has few parameters to be estimated, and regardless of the amount of data
(See, e.g., Lindley, 1957). Consequently, to measure the goodness of fit, it is necessary to
add a penalty term to the log likelihood to discourage overparameterization. In other words,
weneed to use a model selection criterion (MSC) ofthe form

-2 L· (8) + C r
where L· is the mixture log likelihood evaluated at the final stochastic EM estimate for a
fixed k, t is the number of independent parameters to be estimated and C is some
nonnegative constant. The MSC is to be minimized for a specific value of C. A variety of
values ofC havebeenproposed in the literature for dealing with suchkindsofnested models.
For instance, the value C=2 yields the famed Akaike Information Criterion (e.g. Akaike,
1974),C=1 yieldsMallow's Cp criterion (e.g.Mallows, 1973). Note that sincewe haveused
the stochastic EM estimates for varying K, it may still- be wise to continue increasing K a
littlebit more(for nwnerical comparisons) evenafterwehave found what mayseem to be the
optimal value ofK.

FromTables 4 and 5, we see that there is empirical evidence to support a 3 component and 7
component normal distnbution for the fish length and galaxy data, respectively. Our analysis
for the galaxy data seems to jibe with previous analyses (see, for instance, Richardson and
Green, 1997).

Table 4 estimates for parameters of
fISh length mixture distribution

k Mixing Estimates of Estimate of
a

MSC
Weights Means Variance C=2 C=I

k=2 0.6687898 24.6021004 9.1128996 715.2933 711.2933... 0.3312102 32.3499278

k=3 0.3375796 21.89335 1.909613 687.3887 681.3887
0.477707 27.79028
0.1847134 34.77076

k=4 0.3248408 21.71781 2.034998 688.3231 680.3231
0.3757962 27.12237
0.1146497 29.31176
0.1847134 34.75051

k=5 0.3439490 21.92367 2.136815 693.7431 683.7431
0.0636943 26.64021
0.4076433 27.96713
0.1592357 34.73977
0.0254777 34.95222

•
r

•



28 Albert, Elloso and Tan: Analysis of Grouped Data
from a Normal Mixture via the EMAlgorithm

Table 4 Estimates for Parameters l[)ft'
Galaxy Mixture Distribution

k MiDDg Estimates~ Estimate of MSC.
Weights Mw' Variance M C=l

k=2 0.9634146 20.33935 14.69070 598.419 596.419
0.0365853.7 33.13272

k=3 0.08536585 0.03658537 4.19826 549.5633 543.5633
0.5365854 21.36563
0.3414634 33.047

k=4 0.08536585 9.824383 1.553230 438.1822 430.1822
0.5365854 20.10221
0.3414634 23.S0983 •0.03658537 32.96995

k=5 0.08536585 9.76325 1.341690 434.7505 424.7505
0.2439024 20.64546
0.2804878 19.49419
0.3536585 23.51531
0.03658537 32.88194

k=6 0.08536585 9.658427 0.9891369 424.0216 422.0216
0.4634146 19.59991
0.3536585 22.90844
0.02439024 23.35479
0.03658537 26.30577
0.03658537 32.83731

k=7 0.08536585 9.645268 0.2394835 415.7564 401.7564
0.02439024 16.25523
0.4268293 19.75411
0.2439024 22.24974
0.1463415 24.05745
0.03658537 26.54634 ••
0.03658537 32.94669

k=8 0.08536585 9.682605 0.2284021 418.5234 402.5234
0.02439024 15.81530
0.4268293 19.78704
0.1219512 22.03312
0.1951220 23.63668
0.07317073 22.09206
0.03658537 26.32288
0.03658537 33.20738

k=9
0.08536585 9.650418 0.2442592 421.4103 403.4103
0.02439024 16.59457
0.3414634 19.64942
0.08536585 20.28984
0.2073171 22.15472
0.06097561 23.78571 •0.1219512 23.98896
0.03658537 26.47445
0.03658537 33.15847

.'
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To validate the analysis of the fish length data, we see in Figure 2, graphs pertaining to the
estimates of the probability density function forthe fish length data. These estimates were
obtained from the maximum likelihood estimates for varying k. Consistent with the results
on the MSC listed in Tables 4, there does not appear to be any improvement with the use of
more than 3 components for both the fish length data.
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Figure 2- Histogram of fish lengths and probability density
function estimates for varyiJig k, k=I,2,3,4,5•..

6. SUMMARY

The analysis of seemingly complex .statistical models arising from data that are incomplete in
some fashion have not caught much attention particularly among many statistical
practitioners (especially in the Philippines) because of the seeming difficulties in modeling.
With the aid of modem computer resources, free flexible statistical computing software such
as R, and methodologies such as the EM algorithm, the analysis of such.data can now be
addressed. The basic calculations are fairly straightforward for the problem considered in
this paper.

r

'.

•

We proposed here a number of novel ideas, including the use of cluster analysis schemes to
start the ·EM iteration, and implementing variants to the EM algorithm. For estimating the
number of mixture components, we considered a scheme similar to the forward selection
scheme used in regression analysis with a penalized log likelihood criterion. Alternative
methods within a Bayesian context are available for such a problem. For instance,
Richardson and Green (1997), assume that the number of mixture' components has a prior
distribution and consequently implement a specialized MCMC algorithm, Future
investigations along this line ought to be considered, Since the stochastic variant appears



28 Albert, Elloso al1'8d Tall1l: Analysis ofGrouped Data
from a Normal Mixture via the EM Algorithm

very promising, simulated annealing methods should also be investigated. It is also
worthwbile extending this investigation to the multivariate case.

Veryrecently, Liu, Rubin and Wu(1998)haveproposed a newapproach to implementing the
EM algorithm for general incomplete data models through their notion of parameter
extension. This idea is promising not onlybecause its rate of convergence is faster than the
regular EM algorithm but also since this idea can be considered within the framework of
MCMC methods. Unfortunately, there is hitherto no idea' of a concrete parameter extension
scheme for mixture models.

It is hoped that this paper, together with its references, provides statistical practitioners an
idea of how to model grouped data using normal 'mixtures, how to deal with the surrounding
implementation issues, and howto consider otherapplications of the EM algorithm.
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